Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

2.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
3.
Mov Disord ; 39(4): 694-705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396358

RESUMO

BACKGROUND: The gold standard anesthesia for deep brain stimulation (DBS) surgery is the "awake" approach, using local anesthesia alone. Although it offers high-quality microelectrode recordings and therapeutic-window assessment, it potentially causes patients extreme stress and might result in suboptimal surgical outcomes. General anesthesia or deep sedation is an alternative, but may reduce physiological testing reliability and lead localization accuracy. OBJECTIVES: The aim is to investigate a novel anesthesia regimen of ketamine-induced conscious sedation for the physiological testing phase of DBS surgery. METHODS: Parkinson's patients undergoing subthalamic DBS surgery were randomly divided into experimental and control groups. During physiological testing, the groups received 0.25 mg/kg/h ketamine infusion and normal saline, respectively. Both groups had moderate propofol sedation before and after physiological testing. The primary outcome was recording quality. Secondary outcomes included hemodynamic stability, lead accuracy, motor and cognitive outcome, patient satisfaction, and adverse events. RESULTS: Thirty patients, 15 from each group, were included. Intraoperatively, the electrophysiological signature and lead localization were similar under ketamine and saline. Tremor amplitude was slightly lower under ketamine. Postoperatively, patients in the ketamine group reported significantly higher satisfaction with anesthesia. The improvement in Unified Parkinson's disease rating scale part-III was similar between the groups. No negative effects of ketamine on hemodynamic stability or cognition were reported perioperatively. CONCLUSIONS: Ketamine-induced conscious sedation provided high quality microelectrode recordings comparable with awake conditions. Additionally, it seems to allow superior patient satisfaction and hemodynamic stability, while maintaining similar post-operative outcomes. Therefore, it holds promise as a novel alternative anesthetic regimen for DBS. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Hemodinâmica , Ketamina , Doença de Parkinson , Propofol , Humanos , Ketamina/farmacologia , Estimulação Encefálica Profunda/métodos , Masculino , Propofol/farmacologia , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Idoso , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Núcleo Subtalâmico/efeitos dos fármacos
4.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
5.
Mov Disord ; 38(12): 2155-2162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916476

RESUMO

Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Cognitivos , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Cognição , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia
6.
Brain Commun ; 5(6): fcad268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025270

RESUMO

Subthalamic nucleus deep brain stimulation is commonly indicated for symptomatic relief of idiopathic Parkinson's disease. Despite the known improvement in motor scores, affective, cognitive, voice and speech functions might deteriorate following this procedure. Recent studies have correlated motor outcomes with intraoperative microelectrode recordings. However, there are no microelectrode recording-based tools with predictive values relating to long-term outcomes of integrative motor and non-motor symptoms. We conducted a retrospective analysis of the outcomes of patients with idiopathic Parkinson's disease who had subthalamic nucleus deep brain stimulation at Tel Aviv Sourasky Medical Centre (Tel Aviv, Israel) during 2015-2016. Forty-eight patients (19 women, 29 men; mean age, 58 ± 8 years) who were implanted with a subthalamic nucleus deep brain stimulation device underwent pre- and postsurgical assessments of motor, neuropsychological, voice and speech symptoms. Significant improvements in all motor symptoms (except axial signs) and levodopa equivalent daily dose were noted in all patients. Mild improvements were observed in more posterior-related neuropsychological functions (verbal memory, visual memory and organization) while mild deterioration was observed in frontal functions (personality changes, executive functioning and verbal fluency). The concomitant decline in speech intelligibility was mild and only partial, probably in accordance with the neuropsychological verbal fluency results. Acoustic characteristics were the least affected and remained within normal values. Dimensionality reduction of motor, neuropsychological and voice scores rendered six principal components that reflect the main clinical aspects: the tremor-dominant versus the rigidity-bradykinesia-dominant motor symptoms, frontal versus posterior neuropsychological deficits and acoustic characteristics versus speech intelligibility abnormalities. Microelectrode recordings of subthalamic nucleus spiking activity were analysed off-line and correlated with the original scores and with the principal component results. Based on 198 microelectrode recording trajectories, we suggest an intraoperative subthalamic nucleus deep brain stimulation score, which is a simple sum of three microelectrode recording properties: normalized neuronal activity, the subthalamic nucleus width and the relative proportion of the subthalamic nucleus dorsolateral oscillatory region. A threshold subthalamic nucleus deep brain stimulation score >2.5 (preferentially composed of normalized root mean square >1.5, subthalamic nucleus width >3 mm and a dorsolateral oscillatory region/subthalamic nucleus width ratio >1/3) predicts better motor and non-motor long-term outcomes. The algorithm presented here optimizes intraoperative decision-making of deep brain stimulation contact localization based on microelectrode recording with the aim of improving long-term (>1 year) motor, neuropsychological and voice symptoms.

7.
Physiol Rep ; 11(19): e15730, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37786936

RESUMO

Essential tremor (ET) is a common disease in the elderly population. Severe, medication-refractory ET may require surgical intervention via ablation or deep brain stimulation (DBS). Thalamic Vim (Ventral intermediate nucleus), targeted indirectly using atlas-based coordinates, is the classical target in these procedures. We present a case of an ET patient with a non-MR-compatible cardiac orphaned leads who was a candidate for DBS surgery. Due to the lead constraints of MR use, we used a head computed tomography (CT) with contrast media as the reference exam to define the AC, PC, and midline, and to register and indirectly target the Vim. For target validation, we used intraoperative electrophysiological recordings and intraoperative CT. We implanted bilateral directional leads at the target location. We used the-essential-tremor-rating-assessment-scale (TETRAS) pre and postoperatively to clinically evaluate tremor. Intraoperative micro-electrode recordings (MERs) showed individual tremor cells and a robust increase in normalized root mean square (NRMS) indicating entry to the Vim. Postoperative visualization using lead-DBS along with dramatic clinical improvements show that we were able to accurately target the Vim. Our results show that CT-only registration and planning for thalamic Vim DBS is feasible, and that MERs and intraoperative CT are useful adjuncts for Vim target validation.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Idoso , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Tremor/terapia , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética , Eletrofisiologia , Resultado do Tratamento
8.
J Neurosci ; 43(45): 7712-7722, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37833067

RESUMO

Rest tremor is one of the most prominent clinical features of Parkinson's disease (PD). Here, we hypothesized that cortico-basal ganglia neurons tend to fire in a pattern that matches PD tremor frequency, suggesting a resonance phenomenon. We recorded spiking activity in the primary motor cortex (M1) and globus pallidus external segment of 2 female nonhuman primates, before and after parkinsonian state induction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The arm of nonhuman primates was passively rotated at seven different frequencies surrounding and overlapping PD tremor frequency. We found entrainment of the spiking activity to arm rotation and a significant sharpening of the tuning curves in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine state, with a peak response at frequencies that matched the frequency of PD tremor. These results reveal increased sensitivity of the cortico-basal ganglia network to tremor frequency and could indicate that this network acts not only as a tremor switch but is involved in setting its frequency.SIGNIFICANCE STATEMENT Tremor is a prominent clinical feature of Parkinson's disease; however, its underlying pathophysiology is still poorly understood. Using electrophysiological recordings of single cortico-basal ganglia neurons before and after the induction of a parkinsonian state, and in response to passive arm rotation, this study reports increased sensitivity to tremor frequency in Parkinson's disease. We found sharpening of the population tuning to the midrange of the tested frequencies (1-13.3 Hz) in the healthy state that further increased in the parkinsonian state. These results hint at the increased frequency-tuned sensitivity of cortico-basal ganglia neurons and suggest that they tend to resonate with the tremor.


Assuntos
Doença de Parkinson , Animais , Feminino , Tremor , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Gânglios da Base , Globo Pálido , Neurônios/fisiologia , Primatas
9.
Nat Commun ; 14(1): 5434, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669927

RESUMO

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Sono , Globo Pálido , Gânglios da Base
10.
Mov Disord Clin Pract ; 10(8): 1181-1191, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37635781

RESUMO

Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective and evidence-based treatment for idiopathic Parkinson's disease (iPD). A minority of patients does not sufficiently benefit from STN-DBS. Objective: The predictive validity of the levodopa challenge for individual patients is analyzed. Methods: Data from patients assessed with a preoperative Levodopa-test and a follow-up examination (mean ± standard deviation: 9.15 months ±3.39) from Kiel (n = 253), Berlin (n = 78) and Toronto (n = 98) were studied. Insufficient DBS outcome was defined as an overall UPDRS-III reduction <33% compared to UPDRS-III in med-off at baseline or alternatively if the minimal clinically important improvement of 5 points was not reached. Single UPDRS-items and sub-scores were dichotomized. Following exploratory analysis, we trained supervised regression- and classification models for outcome prediction. Results: Data analysis confirmed significant correlation between the absolute UPDRS-III reduction during Levodopa challenge and after stimulation. But individual improvement was inaccurately predicted with a large range of up to 30 UPDRS III points. Further analysis identified preoperative UPDRS-III/med-off-scores and preoperative Levodopa-improvement as most influential factors. The models for UPDRS-III and sub-scores improvement achieved comparably low accuracy. Conclusions: With large prediction intervals, the Levodopa challenge use for patient counseling is limited, though remains important for excluding non-responders to Levodopa. Despite these deficiencies, the current practice of patient selection is highly successful and builds not only on the Levodopa challenge. However, more specific motor tasks and further paraclinical tools for prediction need to be developed.

12.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36945497

RESUMO

Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.

13.
J Am Chem Soc ; 145(6): 3543-3553, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735972

RESUMO

Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of ß-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of ß-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the ß-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on ß-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Placa Amiloide/terapia , Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Simulação de Dinâmica Molecular
14.
Mov Disord ; 38(3): 484-489, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621944

RESUMO

BACKGROUND: It is unknown whether Parkinson's disease (PD) genetic heterogeneity, leading to phenotypic and pathological variability, is also associated with variability in the unique PD electrophysiological signature. Such variability might have practical implications for adaptive deep brain stimulation (DBS). OBJECTIVE: The aim of our work was to study the electrophysiological activity in the subthalamic nucleus (STN) of patients with PD with pathogenic variants in different disease-causing genes. METHODS: Electrophysiological data from participants with negative genetic tests were compared with those from GBA, LRRK2, and PRKN-PD. RESULTS: We analyzed data from 93 STN trajectories (GBA-PD: 28, LRRK2-PD: 22, PARK-PD: 10, idiopathic PD: 33) of 52 individuals who underwent DBS surgery. Characteristics of ß oscillatory activity in the dorsolateral motor part of the STN were similar for patients with negative genetic tests and for patients with different forms of monogenic PD. CONCLUSIONS: The genetic heterogeneity in PD is not associated with electrophysiological differences. Therefore, similar adaptive DBS algorithms would be applicable to genetically heterogeneous patient populations. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Testes Genéticos
15.
Cell Rep ; 42(1): 111898, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36596302

RESUMO

To date, there is a consensus that there are at least two neuronal populations in the non-human primate (NHP) external globus pallidus (GPe): low-frequency discharge (LFD) and high-frequency discharge (HFD) neurons. Nevertheless, almost all NHP physiological studies have neglected the functional importance of LFD neurons. This study examined the discharge features of these two GPe neuronal subpopulations recorded in four NHPs engaged in a classical conditioning task with cues predicting reward, neutral and aversive outcomes. The results show that LFD neurons tended to burst, encoded the salience of behavioral cues, and exhibited correlated spiking activity. By contrast, the HFD neurons tended to pause, encoded cue valence, and exhibited uncorrelated spiking activity. Overall, these findings point to the dichotomic organization of the NHP GPe, which is likely to be critical to the implementation of normal basal ganglia functions and computations.


Assuntos
Globo Pálido , Neurônios , Animais , Globo Pálido/fisiologia , Neurônios/fisiologia , Gânglios da Base , Primatas , Condicionamento Clássico/fisiologia
16.
Cell Rep ; 40(12): 111367, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130495

RESUMO

Sleep spindles are crucial for learning in the cortex and basal ganglia (BG) because they facilitate the reactivation of previously active neuronal ensembles. Studying field potentials (FPs) and spiking in the cortex and BG during sleep in non-human primates following pre-sleep learning, we show that FP sleep spindles are widespread in the BG and are similar to cortical spindles in morphology, spectral content, and response to the pre-sleep task. Further, BG spindles are concordant with electroencephalogram (EEG) spindles and associated with increased cortico-BG correlation. However, spindles across the BG differ markedly in their entrainment of local spiking. The spiking activity of striatal projection neurons exhibits consistent phase locking to striatal and EEG spindles, producing phase windows of peaked cross-region spindling. In contrast, firing in other BG nuclei is not entrained to either local or EEG sleep spindles. These results suggest corticostriatal synapses as the main hub for offline cortico-BG communication.


Assuntos
Gânglios da Base , Sono , Animais , Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado , Eletroencefalografia , Neurônios/fisiologia , Sono/fisiologia
17.
Front Aging Neurosci ; 14: 912967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966789

RESUMO

Objective: It has been argued that the incidence of multiple step saccades (MSS) in voluntary saccades could serve as a complementary biomarker for diagnosing Parkinson's disease (PD). However, voluntary saccadic tasks are usually difficult for elderly subjects to complete. Therefore, task difficulties restrict the application of MSS measurements for the diagnosis of PD. The primary objective of the present study is to assess whether the incidence of MSS in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of PD. Materials and methods: There were four groups of human subjects: PD patients, mild cognitive impairment (MCI) patients, elderly healthy controls (EHCs), and young healthy controls (YHCs). There were four monkeys with subclinical hemi-PD induced by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through the unilateral internal carotid artery and three healthy control monkeys. The behavioral task was a visually guided reactive saccade. Results: In a human study, the incidence of MSS was significantly higher in PD than in YHC, EHC, and MCI groups. In addition, receiver operating characteristic (ROC) analysis could discriminate PD from the EHC and MCI groups, with areas under the ROC curve (AUCs) of 0.76 and 0.69, respectively. In a monkey study, while typical PD symptoms were absent, subclinical hemi-PD monkeys showed a significantly higher incidence of MSS than control monkeys when the dose of MPTP was greater than 0.4 mg/kg. Conclusion: The incidence of MSS in simply reactive saccades could be a complementary biomarker for the early diagnosis of PD.

18.
Elife ; 112022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815934

RESUMO

The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs' capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.


Assuntos
Interneurônios , Tálamo , Animais , Colinérgicos/metabolismo , Corpo Estriado/fisiologia , Dendritos/fisiologia , Interneurônios/fisiologia , Camundongos , Tálamo/fisiologia
19.
Commun Biol ; 5(1): 612, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729350

RESUMO

Spontaneous pauses in firing are the hallmark of external pallidum (GPe) neurons. However, the role of GPe pauses in the basal ganglia network remains unknown. Pupil size and saccadic eye movements have been linked to attention and exploration. Here, we recorded GPe spiking activity and the corresponding pupil sizes and eye positions in non-human primates. We show that pauses, rather than the GPe discharge rate per se, were associated with dilated pupils. In addition, following pause initiation there was a considerable increase in the rate of spontaneous saccades. These results suggest that pauses are a powerful mechanism by which the GPe may influence basal ganglia downstream structures and play a role in exploratory behavior.


Assuntos
Comportamento Exploratório , Globo Pálido , Animais , Gânglios da Base , Globo Pálido/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos
20.
Neurobiol Dis ; 170: 105747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550159

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is commonly and safely performed for selective Parkinson's disease patients. Many centers perform DBS lead positioning exclusively under local anesthesia, to optimize brain microelectrode recordings (MER) and testing of stimulation-related therapeutic and side effects. These measures enable physiological identification of the DBS borders and subdomains based on electrophysiological properties like firing rates and patterns, intra-operative evaluation of therapeutic window, and improvement of lead placement accuracy. Nevertheless, due to the challenges of awake surgery, some centers use sedation or general anesthesia, despite the distortion of discharge properties and interference with clinical testing, resulting in potential impact on surgical outcomes. Thus, there is a need for a novel anesthesia regimen that enables sedation without compromising intra-operative monitoring. OBJECTIVE: This open-label study investigates the use of low-dose ketamine for conscious sedation during microelectrode recordings and lead positioning in subthalamic nucleus (STN) DBS for Parkinson's disease patients. METHODS: Three anesthetic regimens were retrospectively compared in 38 surgeries (74 MER trajectories, 5962 recording sites) across three DBS centers: 1) Interleaved propofol-ketamine (PK), 2) Interleaved propofol-awake (PA), and 3) Fully awake (AA). RESULTS: All anesthesia regimens achieved satisfactory MER. Detection of STN borders and subdomains by expert electrophysiologist was similar between the groups. Electrophysiological signature of the STN under ketamine was not inferior to either control group. All patients completed stimulation testing. CONCLUSIONS: This study supports a low-dose ketamine anesthesia regimen for DBS which allows microelectrode recordings and stimulation testing that are not inferior to those conducted under awake and propofol-awake regimens and may optimize patient experience. A prospective double-blind study that would also compare patients' satisfaction level and clinical outcome should be performed to confirm these findings.


Assuntos
Neoplasias Encefálicas , Estimulação Encefálica Profunda , Ketamina , Doença de Parkinson , Propofol , Anestesia Geral , Estimulação Encefálica Profunda/métodos , Humanos , Microeletrodos , Doença de Parkinson/terapia , Estudos Prospectivos , Estudos Retrospectivos , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...